THE JOURNAL OF PHYSICAL CHEMISTRY B

Guang-Jun Guo*^{,†,‡} and P. Mark Rodger[‡]

Supporting Information

 ABSTRACT:
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...

, .t a.,a.,a.ii.,.a.iifia i a. a. . i. . , ai...a.a., i, , . i.i.i. aa i, a , la la iia l a i a contra contra i ., a., ., ., a. ii, , fi., a, ., ., ., ., a., ai. i. . i. a., a. i... i. i. i $(., i_{1}, ., ., i_{2}, ., i_{2}, ., i_{2}, ., i_{2}, ., ., a_{2})$ i a (a) i , a , a , i i -a (ff , a a i i a i, a a a , ²⁻⁶ ,. ,., ., a i., ii. , . . , , ...a. , . ai..

a a a i ^{10–12}a i ¹⁴a (ai, la, iOa, (...,ai ί. . , . . i.ai ..i.¹⁻¹ Ħ ...(,...i.,i.(...,..,.. i., i., ., a., ., ., ., ., ., .a fl., a i., , a i, fl.ai, a. i. ai. , , ana nii a a a i a a a a a a a a a ff.a.ai(a)(a)(a)(a) ii (a)(a)(a)(a)(a) ia (a)(a)(a)(a)(a) a . ii a. i, a,i. a.aa ...a. ...ii i ,....ai..ii.i a.,i. .a... ., a.a. (a. (i) , ..., ai i

 Received:
 N
 2
 2012

 Revised:
 a
 1, 2013
 2

 Published:
 a
 2, 2013
 2

ACS Publications © 2013 American Chemical Society

Table 1. Details of Simulation Systems^a

	Ν	Ν	T ()	P (a.)	$L_{x(y)}$ ()	χ		ai
	3 0	1 00	25 .5	1.2	2.	1.0	20	200
	640	1 00	25 .5	32 .5	2 .	1.0	20	200
-	00	1 00	25 .5	2 .2	30.04	1.0	20	200
D	00	1 00	250.0	2 .4	2.2	1.0	20	200
	00	1 00	240.0	2.	2.	1.0	20	400
	00	1 00	25 .5	26.3	2,4	1.20	20	200
2	00	1 00	25 .5	24.5	2.2	1.30	2	300
1	00	1 00	25 .5	45.0	2.3	1.30	1	300

. ai.

aiaa 3 a a i ca ί. i a $1 \quad 30 \quad \times \quad 30 \quad \times \quad 120 \quad N \quad - \mathbf{M}$. a a ani. - a, a an a, i, a ni. , 1.0 , , , ai NPT ai NPT au i a . . i-i (i, a. i. . i.a.i. i. a.fi.i.i.ai.ai, aia

 $i \cdot a = \frac{4}{2005}$ $a = \frac{a}{22}$ $a = \frac{1}{22}$ $a = \frac{1}{22}$

$$\sigma_{\rm MO} = (\sigma_{\rm M} + \sigma_{\rm O})/2$$
$$\varepsilon_{\rm MO} = \chi \sqrt{\varepsilon_{\rm M} \varepsilon_{\rm O}}$$

a fill a

с. с. . а i . , , . ia . . ia . с. . , а . i

, i a (... i a (. (.... , ... i, ... i.i.a., 245 30 a., a, iia

(a = 1), a = i, $(a = a, (T, P, a = \chi), a = aff$, a. . ii. a. a., 20 iii i.ai . ί, , , ί, , , , , a a, ί, ι 1.0 i ., a. a. a. (, (. , a. . , .ii., *z*-.i. i (i., , ..i. ii.a. , i (a.) i 120 a.a. a i i i ... 1 a, a, ,, , aa (, , , , a, a, , , a, , i, fi, ρ , a fi, z, (z) i fi, x, (z) i fi, x, (z) a fi, x, (z) a ρ a i, a a (z 1 26 , 4), a i a a a (z 1 -35 , 5 , , , , , , , , (a.i., a.i., a (z_1 34 (b) , a (z_1 34 (b) , a (

Figure 1. ia $(f_1 a)$ $(f_2 a)$ $(f_3 a)$ $(f_4 a)$ (

Figure 2. Do is a final sector (\bullet) as a (\bullet) as a (\bullet)

Ε τ.

Figure 3. i i x(t) i a fi (45-5) i a i ai a i a i a a a a i 1.

a ia concasta a ia fi а i. , a. . . , . . , .. i.ai, ,...,ai. i. 3a 4., , a . , , (a a . ai). i , i ai a i i a ₂, aa iifia. aii 1 i.ai $(\ldots 1)$ $\ldots 1$ 100 ..., a., i.ai.a, ...a., ..., ...a., i а aa) iiii.

i. 4 ii fi , a , x(z)(a , a , a , 100 i , a i), , , a , .

Table 2. Structural	Characterization	of Methane Sc	olutions under the	Equilibrium	(system A)	and Metastable	(systems E	B - G ₂)
Conditions ^{<i>a</i>}				-				

	Ν	Ν	x	C (⁻³)	C_{a} (⁻³)	ρ $(/ ^3)$	f a.
	4.5(2)	(1)	0.0051(2)	0.1 (1)	0.246(0)	0, 01(2)	0.214(0)
	.2(3)	(1)	0.00 1(4)	0.30(1)	0.22 (1)	1.0046(4)	0.201(0)
-	12.2(3)	20(1)	0.0131(3)	0.45(1)	0.200(1)	1.02 4(3)	0.1 (0)
D	15.1(3)	05(1)	0.0164(3)	0.56(1)	0.255(1)	1.023 (4)	0.226(1)
	22.3()	0(2)	0.024 ()	0. 4(3)	0.365(3)	1.011 (,)	0.30 (2)
	2 .2(4)	2(1)	0.0310(5)	1.05(1)	0.240(1)	1.00 (5)	0.20 (1)
2	45. (15)	42(3)	0.0514(1)	1. 1(5)	0.2 (3)	0, 02(15)	0.24 (1)

 a. 6a. a. 3. (. 13).

 Table 3. Free Energies for Methane Cluster Formation^a

	$\Delta G_1/kT$		$\Delta G_1/kT$
	2.55		1.11
	1, 1		0, 1
-	1.56	2	0. 0
D	1.42		

 ${}^{a}\Delta G_{1}$ i , and a second and a second a

DC .

fi ..., a ...,

ann, a fin a ann a x fian lian . i . . i , i , a i a i a i²¹a. , a l , ia à ifii, i a i ²³ , . , a . , ...a . $\frac{1}{1} \frac{1}{1} \frac{1}$, i i i , , a , i , i , a , i a a i ia , , , i, i, fi 3-5, a a a a a a a i a, , i,

aire aa ranai , i ji 3–5 a i (, , a a , (a.(ai , i , i 3-5 , 2 , a a , a, - , a, , a , (, i a , a , , , a , a , a , a , a , (a.(ai i, i a a , (- a i , a a , i , i , a , , a , a , (ai , a , i , i , a , , a , a , (ai , i , fl ii , a , a , a , a , a , a , a a , a , a , i , , , a , (ai , i , (a , a , a , i , , (ai , i)) , a (i. . , a — i. i (a. . . . , a . . . i i a i , . . (i a (. . i, (. . . D i.ai,³⁰, i, ... a... x 0.015 ... , a ai. ¶ (, , a , , a ii a (, i i ai ³¹ i , , a (fi a , c . a a ci . a,..., ,.a., e , i e. e a .e. e ... i fl....., ,. , i i . a i . i . , , , , , , 2 , a . a . a . 50 . a (... i... i. a. a. a. a. ... i i a., ii, i, i., ..., a i,

(1, 1, ..., a) (a) (a)

a. a. i i.a., i, i, ..., i a. a. ai. iff. ff. i.ai. ..., a. -..., a. ai. i.a. a. a. i , a. -..., a. ai. i.i. i D g(r) i i. 5 a. 6 ..., i ..., ai. ..., ai. ..., a. ..., i ..., fi. a ..., a., i ..., fi. a ..., a. ..., i ..., a ..., a. ..., a. ..., a. ..., a ..., a. ..., a. ..., a. ..., a ..., a. ..., a.

aa ia (i, a ai

.a. a. (i ,,..., i (, म्) , ,...(a. ... ai .¹⁴ , " 🎮 , ai, a, a, i, i, i, a, i, , (a i . , . a . , a a . (a . , . a . a . , , . (ia . . . ani a . ~ . . , . . a. , a . , a.a., a..., i annin, n., n. i, ii ..., a... л а. (..аі. і..., ла. ...аіал, ..а. and in a contraction of a second s a i . ai a . , . . a. , . . . i i , . i a. . , a a i.... a i , ...a aiia, a, a aai, a ii, i

.... i. a i.a., ".a. ...a i.a., "., i. . i.a.iia.a.,,, .a.a.a.i. , , , , , i.e. a i $, \ldots -$ a c i can i cara c $, \chi$, ia i...a. (ai.,...ai.,...ai.,...aa.,i i.ai.,ii, i.a.('aa......i.,...a. i..., ii ,a., ia, , , , a..., ai a...ai ai.

C G 、

ii, , a ia, i a fi ... a a , aa , a , a i , i . . . i . a i . . i ifia ..., i ai i a , a a a ai ai aa, i, , , , a, , , , i, a, , i, ,a i, , aaia i .O.aa i ,a .i , ff , a a chai (i., h ciia h cho cho , ai) a , . . . a , . . , . i, ., a. . . ii,,

a, i = 1 - 51%, a = 1 - 31%, a

A CAEDC E

- (3) (, . . Ann. N.Y. Acad. Sci. 2000, 912, 4 4.

- (4) a a , . . , . . . , . . . , . . . J. Chem. Phys. 2005, 123, 16450 .(5) a , . 🖣 . , . , a a , . . J. Phys. Chem. B 2005, 109,
- 1 0 0.
- (6) i , Chem. Eng. J. 2010, 161, 146. , . a ., J. Am. Chem. Soc. 2003, () 125, 4 06.
- () **Fi**, Phys. Chem. Chem. Phys. 2008, 10, 4 53.
- (,) a,, . . ,, . . a, .**D**. . , . . ., **D**. . Science 2009, 326, 10 5.
- (10) a , . . . ■1 , . . i , V. J. Am. Chem. Soc. 2010, 132, 11 06.
- (11) a , , , , , , , i , , V. J. Phys. Chem. B 2010, 114, 13 6.
- 15065.
- .-., а , .-. і , .-. і, .-Щ Phys. Chem. Chem. (13) Phys. 2011, 13, 1204 .
- (14) , .-. i, . a , .-. , .-. , .-. Phys. Chem. Chem. Phys. 2009, 11, 1042.
- (15) a , , . . ai., , . **D**. a , **D**.-**F**₄ a, . . , . D. , .-•¶, , . . a, . [, D. . , . . Phys. Chem. Chem. Phys. 2011, 13, 1, 51. .,,...a,.D.
- (16) a , . . , . i, . . a , . i, . J. Chem. Phys. 2012, 136, 22450 .
- (1) ai, **D**. , , , , a , , a , . Langmuir 2012, 28, 30.
- (1) a. . i, . D. . . J. Phys. Chem. Lett. 2012, 3, 2, 42.
- (1) a , J. Phys. Chem. B 2013, 117, 1403.

- (22) , , , . . a ..., J. Am. Chem. Soc. **1984**, 106, 663 .
- (23) D. . . , H. ai., . V. a, . a , . J. Chem. Phys.
- (25) 128. 1 4504.
- (26) . a. , i , . The Atomistic Nature of Crystal Growth
- Cosmochim. Acta 1992, 56, 1451.

- . . Langmuir **2010**, 26, 462 .
- (30) a, , . . , a, . . , , . . a, . **D**. . , **D**. . , . . J. Phys. Chem. C 2011, 115, 21241.
- (31) a., (a., , . . . , . . a., . i . . , . . J. Phys. Chem. C 2012, 116, 24, 0.
- (32) , . . , Geochim. Cosmochim. Acta 2008, 72, 412.
- (33) i.a., . **a** a.i. U.i.i., *i. Int. J. Hydrogen* Energy **2011**, 36, 51.